31DEC

Welcome To Mediterr J Med Med Sci

Manuscripts are accepted for consideration with understanding that they are represent original material and they are not being considered for publication elsewhere. The editors welcome the submission of relevant articles for editorial consideration. Manuscripts and all scientific and professional data should be addressed to Editor-in-Cheif (Fmosherif@yahoo.com).

Mediterranean Journal of Medicine and Medical Sciences
https://www.mmj.org.ly/article/doi/10.5281/zenodo.17619107

Mediterranean Journal of Medicine and Medical Sciences

REVIEW

Polyphenol-rich black chokeberry (Aronia melanocarpa) and its therapeutic potential in type 2 diabetes mellitus: A comprehensive review

Syed Faizan Syed Nizamuddin

Downloads: 1
Views: 165

Abstract

Diabetes mellitus is a global public health crisis, which we see mostly in Type 2 Diabetes (T2D) cases. Incidence of T2D is on the rise with the aging population, poor lifestyle choices, and bad diet, which in turn are health and economic issues. Black chokeberry (Aronia melanocarpa) has become a focus due to its high level of polyphenols, which include anthocyanins, proanthocyanidins, flavonols, and phenolic acids, known for their antioxidant, anti-inflammatory, hypoglycaemic and hypolipidemic actions. As to its flavonoid a-chokeberry, has been reported to do well in terms of digestive enzyme inhibition and also in improving insulin sensitivity. Anthocyanins have positively influenced glucose uptake, antioxidant properties, reduced inflammatory response, and improved lipid metabolism. Hydroxycinnamic acids, particularly chlorogenic acid, have also shown some evidence of supporting altered glucose homeostasis regulation, α-glucosidase inhibition, and gut microbiota. Additionally, experimental and clinical studies have shown combined hyperglycaemic effects with improved pancreatic β-cell function and improved lipid parameters as a result of supplemented chokeberry extract. Overall, the Black chokeberry presents favourable qualities regarding functional foods and adjunctive treatment in T2D; however, further clinical study is needed.

Keywords

Antioxidant activity, Aronia melanocarpa, flavonoids, insulin sensitivity, polyphenols

References

  1. Hossain MJ, Al-Mamun M, Islam MR. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Science Reports. 2024; 7(3): e2004. doi: 10.1002/hsr2.2004
  2. McIntyre HD, Catalano P, Zhang C, Desoye G, Mathiesen ER, Damm P. Gestational diabetes mellitus. Nature Reviews. Disease Primers. 2019; 5(1): 47. doi: 10.1038/s41572-019-0098-8
  3. Gaál Z, Balogh I. Monogenic forms of diabetes mellitus. Experientia. Supplementum. 2019; 111: 385-416. doi: 10.1007/978-3-030-25905-1_18
  4. International Diabetes Federation. IDF Diabetes Atlas. 11th ed. Brussels, IDF; 2025. ISBN: 978-2-930229-96-6.
  5. Caturano A, D’Angelo M, Mormone A, Russo V, Mollica MP, Salvatore T, et al. Oxidative stress in type 2 diabetes: impacts from pathogenesis to lifestyle modifications. Current Issues in Molecular Biology. 2023; 45(8): 6651-6666. doi: 10.3390/cimb45080420
  6. Liu Y, Nie D, Lou X. The cardiovascular benefits of glucagon-like peptide-1 receptor agonists as novel diabetes drugs are mediated via the suppression of miR-203a-3p and miR-429 expression. DNA and Cell Biology. 2024; 43(8): 387-394. doi: 10.1089/dna.2024.0052
  7. Nevola R, Alfano M, Pafundi PC, Brin C, Gragnano F, Calabrò P, et al. Cardiorenal impact of SGLT-2 inhibitors: A conceptual revolution in the management of type 2 diabetes, heart failure and chronic kidney disease. Reviews in Cardiovascular Medicine. 2022; 23(3): 106. doi: 10.31083/j.rcm2303106
  8. Caturano A. Cardiovascular and metabolic disease: New treatments and future directions. Biomedicines. 2024; 12(6): 1356. doi: 10.3390/biomedicines12061356
  9. Elmiladi SA, Elgdhafi EO. Prevalence of cardiovascular risk factors in Libyan patients with type 2 diabetes mellitus. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2023; 3(2): 27-33. doi: 10.5281/zenodo.7877416
  10. Ahmed R, Uddin MM, Hoque M. Nutraceuticals: Food-based therapeutics and health benefits. Mediterranean Journal of Medicine and Medical Sciences. 2025; 1(1): 22-30. doi: 10.5281/zenodo.15771921
  11. Elmiladi SA. GLP-1RA for glycaemic control and obesity as add-on therapy for type 2 diabetes. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2023; 3(2): 45-50. doi: 10.5281/zenodo.7942952
  12. Zhang Y, Zhao Y, Liu X, Chen X, Ding C, Dong L, et al. Chokeberry (Aronia melanocarpa) as a new functional food relationship with health: An overview. Journal of Future Foods. 2021; 1(2): 168-178. doi: 10.1016/j.jfutfo. 2022.01.006
  13. Sidor A, Drożdżyńska A, Gramza-Michałowska A. Black chokeberry (Aronia melanocarpa) and its products as potential health-promoting factors-an overview. Trends in Food Science and Technology. 2019; 89: 45-60. doi: 10.1016/j.tifs.2019.05.006
  14. Kulling SE, Rawel HM. Chokeberry (Aronia melanocarpa)-A review on the characteristic components and potential health effects. Planta Medica. 2008; 74(13): 1625-16134. doi: 10.1055/s-0028-1088306
  15. Bhaswant M, Shafie SR, Mathai ML, Mouatt P, Brown L. Anthocyanins in chokeberry and purple maize attenuate diet-induced metabolic syndrome in rats. Nutrition. 2017; 41: 24-31. doi: 10.1016/j.nut.2016.12.009
  16. Kim NH, Jegal J, Kim YN, Heo JD, Rho JR, Yang MH, Jeong EJ. Chokeberry extract and its active polyphenols suppress adipogenesis in 3T3-L1 adipocytes and modulates fat accumulation and insulin resistance in diet-induced obese mice. Nutrients. 2018; 10(11): 1734. doi: 10.3390/nu10111734
  17. Shi D, Xu J, Sheng L, Song K. Comprehensive utilization technology of Aronia melanocarpa. Molecules. 2024; 29(6):1388. doi: 10.3390/molecules29061388
  18. Sójka M, Kołodziejczyk K, Milala J. Polyphenolic and basic chemical composition of black chokeberry industrial by-products. Industrial Crops and Products. 2013; 51: 77-86. doi: 10.1016/j.indcrop.2013.08.051
  19. Gao N, Sun X, Li D, Gong E, Tian J, Si X, et al. Optimization of anthocyanidins conversion using chokeberry pomace rich in polymeric proanthocyanidins and cellular antioxidant activity analysis. Lwt. 2020;1 33: 109889. doi: 10.1016/j.lwt.2020.109889
  20. Wu X, Gu L, Prior RL, McKay S. Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. Journal of Agricultural and Food Chemistry. 2004; 52(26): 7846-7856. doi: 10.1021/jf0486850
  21. Ou K, Gu L. Absorption and metabolism of proanthocyanidins. Journal of Functional Foods. 2014; 7: 43-53. doi: 10.1016/j.jff.2013.08.004
  22. Sun Q, Wedick NM, Tworoger SS, Pan A, Townsend MK, Cassidy A, et al. Urinary excretion of select dietary polyphenol metabolites is associated with a lower risk of type 2 diabetes in proximate but not remote follow-up in a prospective investigation in 2 cohorts of US women. The Journal of Nutrition. 2015; 145(6): 1280-1288. doi: 10.3945/jn.114.208736
  23. Knekt P, Kumpulainen J, Järvinen R, Rissanen H, Heliövaara M, Reunanen A, et al. Flavonoid intake and risk of chronic diseases. The American Journal of Clinical Nutrition. 2002; 76(3): 560-568. doi: 10.1093/ajcn/76. 3.560
  24. Wedick NM, Pan A, Cassidy A, Rimm EB, Sampson L, Rosner B, et al. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women12345. The American Journal of Clinical Nutrition. 2012; 95(4): 925-933. doi: 10.3945/ajcn.111.028894
  25. Song Y, Manson JE, Buring JE, Sesso HD, Liu S. Associations of dietary flavonoids with risk of type 2 diabetes, and markers of insulin resistance and systemic inflammation in women: a prospective study and cross-sectional analysis. Journal of the American College of Nutrition. 2005; 24(5): 376-384. doi: 10.1080/07315724.2005. 10719488
  26. Nettleton JA, Harnack LJ, Scrafford CG, Mink PJ, Barraj LM, Jacobs Jr DR. Dietary flavonoids and flavonoid-rich foods are not associated with risk of type 2 diabetes in postmenopausal women. The Journal of Nutrition. 2006; 136(12): 3039-3045. doi: 10.1093/jn/136.12.3039
  27. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal. 2013; 2013(1): 162750. doi: 10.1155/2013/162750
  28. Panche AN, Diwan AD, Panche AN. Flavonoids: An overview. Journal of Nutritional Science. 2016; 5: 1-5. doi: 10.1017/jns.2016.41
  29. Stavenga DG, Leertouwer HL, Dudek B, Van der Kooi CJ. Coloration of flowers by flavonoids and consequences of pH dependent absorption. Frontiers in Plant Science. 2021; 11: 600124. doi: 10.3389/fpls.2020 .600124
  30. Chu L, Zheng W, Wang J, Wang Z, Zhao W, Zhao B, et al. Comparative analysis of the difference in flavonoid metabolic pathway during coloring between red-yellow and red sweet cherry (Prunus avium L.). Gene. 2023; 880: 147602. doi: 10.1016/j.gene.2023.147602
  31. Chen S, Wang X, Cheng Y, Gao H, Chen X. A review of classification, biosynthesis, biological activities and potential applications of flavonoids. Molecules. 2023; 28(13): 4982. doi: 10.3390/molecules28134982
  32. Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry. 2022; 383: 132531. doi: 10.1016/j.foodchem.2022.132531
  33. Li S, Liu J, Li Z, Wang L, Gao W, Zhang Z, Guo C. Sodium-dependent glucose transporter 1 and glucose transporter 2 mediate intestinal transport of quercetrin in Caco-2 cells. Food and Nutrition Research. 2020; 64: 10-29219. doi: 10.29219/fnr.v64.3745
  34. Kotik M, Kulik N, Valentova K. Flavonoids as aglycones in retaining glycosidase-catalyzed reactions: Prospects for green chemistry. Journal of Agricultural and Food Chemistry. 2023; 71(41): 14890-14910. doi: 10.1021/acs.jafc.3c04389
  35. Chen Z, Zheng S, Li L, Jiang H. Metabolism of flavonoids in human: a comprehensive review. Current Drug Metabolism. 2014; 15(1): 48-61. doi: 10.2174/138920021501140218125020
  36. Yang B, Liu H, Yang J, Gupta VK, Jiang Y. New insights on bioactivities and biosynthesis of flavonoid glycosides. Trends in Food Science and Technology. 2018; 79: 116-124.doi: 10.1016/j.tifs.2018.07.006
  37. Hussain SA, Ahmed ZA, Mahwi TO, Aziz TA. Quercetin dampens postprandial hyperglycemia in type 2 diabetic patients challenged with carbohydrates load. International Journal of Diabetes Research. 2012; 1(3): 32-35. doi: 10.5923/j.diabetes.20120103.01
  38. Lee KH, Park E, Lee HJ, Kim MO, Cha YJ, Kim JM, et al. Effects of daily quercetin-rich supplementation on cardiometabolic risks in male smokers. Nutrition Research and Practice. 2011; 5(1): 28-33.  doi: 10.4162/nrp.2011.5.1.28
  39. Shi GJ, Li Y, Cao QH, Wu HX, Tang XY, Gao XH, et al. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomedicine and Pharmacotherapy. 2019; 109: 1085-1099. doi: 10.1016/j.biopha.2018.10.130
  40. Yuan M, Sun T, Zhang Y, Guo C, Wang F, Yao Z, Yu L. Quercetin alleviates insulin resistance and repairs intestinal barrier in db/db mice by modulating gut microbiota. Nutrients. 2024; 16(12): 1870. doi: 10.3390/nu 16121870
  41. Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis GA, Vogiatzi G, Papaioannou S, et al. The role of inflammation in diabetes: current concepts and future perspectives. European Cardiology Review. 2019; 14(1): 50-59. doi: 10.15420/ecr.2018.33.1
  42. Jiang H, Yamashita Y, Nakamura A, Croft K, Ashida H. Quercetin and its metabolite isorhamnetin promote glucose uptake through different signalling pathways in myotubes. Scientific Reports. 2019; 9(1): 2690. doi: 10.1038/s41598-019-38711-7
  43. Dower JI, Geleijnse JM, Gijsbers L, Zock PL, Kromhout D, Hollman PC. Effects of the pure flavonoids epicatechin and quercetin on vascular function and cardiometabolic health: a randomized, double-blind, placebo-controlled, crossover trial. The American Journal of Clinical Nutrition. 2015; 101(5): 914-921. doi: 10.3945/ajcn.114.098590
  44. Chun JH, Henckel MM, Knaub LA, Hull SE, Pott GB, Ramirez DG, Reusch JE, Keller AC. (−)-Epicatechin Reverses Glucose Intolerance in Rats Housed at Thermoneutrality. Planta Medica. 2022; 88(09/10): 735-744. doi: 10.1055/a-1843-9855
  45. Gutiérrez-Salmeán G, Ortiz-Vilchis P, Vacaseydel CM, Garduño-Siciliano L, Chamorro-Cevallos G, Meaney E, Villafaña S, Villarreal F, Ceballos G, Ramírez-Sánchez I. Effects of (−)-epicatechin on a diet-induced rat model of cardiometabolic risk factors. European Journal of Pharmacology. 2014; 728: 24-30. doi: 10.1016/j.ejphar. 2014.01.053
  46. Cordero-Herrera I, Martín MÁ, Goya L, Ramos S. Cocoa flavonoids attenuate high glucose-induced insulin signalling blockade and modulate glucose uptake and production in human HepG2 cells. Food and Chemical Toxicology. 2014; 64: 10-19. doi: 10.1016/j.fct.2013.11.014
  47. Álvarez-Cilleros D, Martín MÁ, Ramos S. Protective effects of (-)-epicatechin and the colonic metabolite 3, 4-dihydroxyphenylacetic acid against glucotoxicity-induced insulin signalling blockade and altered glucose uptake and production in renal tubular NRK-52E cells. Food and Chemical Toxicology. 2018; 120: 119-128. doi: 10.1016/j.fct.2018.07.003
  48. Guo X, Yang B, Tan J, Jiang J, Li D. Associations of dietary intakes of anthocyanins and berry fruits with risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective cohort studies. European Journal of Clinical Nutrition. 2016; 70(12): 1360-1367. doi: 10.1038/ejcn.2016.142
  49. Li D, Zhang Y, Liu Y, Sun R, Xia M. Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients. The Journal of Nutrition. 2015; 145(4): 742-748. doi: 10.3945/jn.114.205674
  50. Yang L, Ling W, Yang Y, Chen Y, Tian Z, Du Z, et al. Role of purified anthocyanins in improving cardiometabolic risk factors in Chinese men and women with prediabetes or early untreated diabetes-A randomized controlled trial. Nutrients. 2017; 9(10): 1104. doi: 10.3390/nu9101104
  51. Vagiri M, Jensen M. Influence of juice processing factors on quality of black chokeberry pomace as a future resource for colour extraction. Food Chemistry. 2017; 217: 409-417.  doi: 10.1016/j.foodchem.2016.08
  52. Grunovaitė L, Pukalskienė M, Pukalskas A, Venskutonis PR. Fractionation of black chokeberry pomace into functional ingredients using high pressure extraction methods and evaluation of their antioxidant capacity and chemical composition. Journal of Functional Foods. 2016; 24: 85-96. doi: 10.1016/j.jff.2016.03.018
  53. Wangensteen H, Bräunlich M, Nikolic V, Malterud K, Slimestad R, Barsett H. Anthocyanins, proanthocyanidins and total phenolics in four cultivars of aronia: Antioxidant and enzyme inhibitory effects. Journal of Functional Foods. 2014; 7: 746-752. doi: 10.1016/j.jff.2014.02.006
  54. Wu X, Gu L, Prior RL, McKay S. Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. Journal of Agricultural and Food Chemistry. 2004; 52(26): 7846-7856. doi: 10.1021/jf0486850
  55. Tao Y, Wang Y, Pan M, Zhong S, Wu Y, Yang R, Han Y, Zhou J. Combined ANFIS and numerical methods to simulate ultrasound-assisted extraction of phenolics from chokeberry cultivated in China and analysis of phenolic composition. Separation and Purification Technology. 2017; 178: 178-188. doi: 10.1016/j.ultsonch. 2024.107153
  56. Meng L, Zhu J, Ma Y, Sun X, Li D, Li LI, et al. Composition and antioxidant activity of anthocyanins from Aronia melanocarpa cultivated in Haicheng, Liaoning, China. Food Bioscience. 2019; 30: 100413. doi: 10.1016/ j.ultsonch.2022.106102
  57. Cretu GC, Morlock GE. Analysis of anthocyanins in powdered berry extracts by planar chromatography linked with bioassay and mass spectrometry. Food Chemistry. 2014; 146: 104-112. doi: 10.1016/j.foodchem.2013.09. 038
  58. Brand MH, Connolly BA, Levine LH, Richards JT, Shine SM, Spencer LE. Anthocyanins, total phenolics, ORAC and moisture content of wild and cultivated dark-fruited Aronia species. Scientia Horticulture. 2017; 224: 332-342. doi: 10.1016/j.scienta.2017.06.021
  59. Veberic R, Slatnar A, Bizjak J, Stampar F, Mikulic-Petkovsek M. Anthocyanin composition of different wild and cultivated berry species. LWT-Food Science and Technology. 2015; 60(1): 509-517. doi: 10.1016/j.lwt. 2014.08.033
  60. Zhou M, Wang S, Zhao A, Wang K, Fan Z, Yang H, et al. Transcriptomic and metabonomic profiling reveal synergistic effects of quercetin and resveratrol supplementation in high fat diet fed mice. Journal of Proteome Research. 2012; 11(10): 4961-4971. doi: 10.1021/pr3004826
  61. Yan F, Zheng X. Anthocyanin-rich mulberry fruit improves insulin resistance and protects hepatocytes against oxidative stress during hyperglycemia by regulating AMPK/ACC/mTOR pathway. Journal of Functional Foods. 2017; 30: 270-281. doi: 10.1016/j.jff.2017.01.027
  62. Nemes A, Homoki JR, Kiss R, Hegedűs C, Kovács D, Peitl B, et al. Effect of anthocyanin-rich tart cherry extract on inflammatory mediators and adipokines involved in type 2 diabetes in a high fat diet induced obesity mouse model. Nutrients. 2019; 11(9): 1966. doi: 10.3390/nu11091966
  63. Tian L, Ning H, Shao W, Song Z, Badakhshi Y, Ling W, et al. Dietary cyanidin-3-glucoside attenuates high-fat-diet–induced body-weight gain and impairment of glucose tolerance in mice via effects on the hepatic hormone FGF21. The Journal of Nutrition. 2020; 150(8): 2101-2111. doi: 10.1093/jn/nxaa140
  64. Ye X, Chen W, Tu P, Jia R, Liu Y, Tang Q, et al. Antihyperglycemic effect of an anthocyanin, cyanidin-3-O-glucoside, is achieved by regulating GLUT-1 via the Wnt/β-catenin-WISP1 signaling pathway. Food and Function. 2022; 13(8): 4612-4623. doi: 10.1039/D1FO03730G
  65. Guo H, Xia M, Zou T, Ling W, Zhong R, Zhang W. Cyanidin 3-glucoside attenuates obesity-associated insulin resistance and hepatic steatosis in high-fat diet-fed and db/db mice via the transcription factor FoxO1. The Journal of Nutritional Biochemistry. 2012; 23(4): 349-360. doi: 10.1016/j.jnutbio.2010.12.013
  66. Qin B, Anderson RA. An extract of chokeberry attenuates weight gain and modulates insulin, adipogenic and inflammatory signalling pathways in epididymal adipose tissue of rats fed a fructose-rich diet. British Journal of Nutrition. 2012; 108(4): 581-587. doi: 10.1017/S000711451100599X
  67. Wu T, Jiang Z, Yin J, Long H, Zheng X. Anti-obesity effects of artificial planting blueberry (Vaccinium ashei) anthocyanin in high-fat diet-treated mice. International Journal of Food Sciences and Nutrition. 2016; 67(3): 257-264. doi: 10.3109/09637486.2016.1146235
  68. Qin Y, Zhai Q, Li Y, Cao M, Xu Y, Zhao K, Wang T. Cyanidin-3-O-glucoside ameliorates diabetic nephropathy through regulation of glutathione pool. Biomedicine and Pharmacotherapy. 2018; 103: 1223-1230. doi: 10.1016/ j.biopha.2018.04.137
  69. Daveri E, Cremonini E, Mastaloudis A, Hester SN, Wood SM, Waterhouse AL, Anderson M, Fraga CG, Oteiza PI. Cyanidin and delphinidin modulate inflammation and altered redox signaling improving insulin resistance in high fat-fed mice. Redox Biology. 2018; 18: 16-24. doi: 10.1016/j.redox.2018.05.012
  70. Johnson MH, De Mejia EG, Fan J, Lila MA, Yousef GG. Anthocyanins and proanthocyanidins from blueberry–blackberry fermented beverages inhibit markers of inflammation in macrophages and carbohydrate‐utilizing enzymes in vitro. Molecular Nutrition & Food Research. 2013; 57(7): 1182-1197. doi: 10.1002/mnfr.201200678
  71. Graf D, Seifert S, Jaudszus A, Bub A, Watzl B. Anthocyanin-rich juice lowers serum cholesterol, leptin, and resistin and improves plasma fatty acid composition in Fischer rats. PLoS one. 2013; 8(6): e66690. doi: 10.1371/ journal.pone.0066690
  72. Seymour EM, Tanone II, Urcuyo-Llanes DE, Lewis SK, Kirakosyan A, Kondoleon MG, Kaufman PB, Bolling SF. Blueberry intake alters skeletal muscle and adipose tissue peroxisome proliferator-activated receptor activity and reduces insulin resistance in obese rats. Journal of Medicinal Food. 2011; 14(12): 1511-1518. doi: 10.1089/jmf.2010.0292
  73. Seamon B, DeFranco M, Thigpen M. Use of the Xbox Kinect virtual gaming system to improve gait, postural control and cognitive awareness in an individual with Progressive Supranuclear Palsy. Disability and Rehabilitation. 2017; 39(7): 721-726. doi: 10.3109/09638288.2016
  74. Lee S, Keirsey KI, Kirkland R, Grunewald ZI, Fischer JG, de La Serre CB. Blueberry supplementation influences the gut microbiota, inflammation, and insulin resistance in high-fat-diet–fed rats. The Journal of Nutrition. 2018; 148(2): 209-219. doi: 10.1093/jn/nxx027
  75. Tsuda T, Ueno Y, Aoki H, Koda T, Horio F, Takahashi N, Kawada T, Osawa T. Anthocyanin enhances adipocytokine secretion and adipocyte-specific gene expression in isolated rat adipocytes. Biochemical and Biophysical Research Communications. 2004; 316(1): 149-157. doi: 10.1016/j.bbrc.2004.02.031
  76. Takikawa M, Inoue S, Horio F, Tsuda T. Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase in diabetic mice. The Journal of Nutrition. 2010; 140(3): 527-533. doi: 10.3945/jn.109.118216
  77. Kurimoto Y, Shibayama Y, Inoue S, Soga M, Takikawa M, Ito C, et al. Black soybean seed coat extract ameliorates hyperglycemia and insulin sensitivity via the activation of AMP-activated protein kinase in diabetic mice. Journal of Agricultural and Food Chemistry. 2013; 61(23): 5558-5564. doi: 10.1021/jf401190y
  78. Choi KH, Lee HA, Park MH, Han JS. Mulberry (Morus alba L.) fruit extract containing anthocyanins improves glycemic control and insulin sensitivity via activation of AMP-activated protein kinase in diabetic C57BL/Ksj-db/db mice. Journal of Medicinal Food. 2016; 19(8): 737-745. doi: 10.1089/jmf.2016.3665
  79. Iizuka Y, Ozeki A, Tani T, Tsuda T. Blackcurrant extract ameliorates hyperglycemia in type 2 diabetic mice in association with increased basal secretion of glucagon-like peptide-1 and activation of AMP-activated protein kinase. Journal of Nutritional Science and Vitaminology. 2018; 64(4): 258-264. doi: 10.3177/jnsv.64.258
  80. Ho GTT, Bräunlich M, Austarheim I, Wangensteen H, Malterud KE, Slimestad R, et al. Immunomodulating activity of Aronia melanocarpa polyphenols. International Journal of Molecular Sciences. 2014; 15(7): 11626-11636. doi: 10.3390/ijms150711626
  81. Oszmiański J, Lachowicz S. Effect of the production of dried fruits and juice from chokeberry (Aronia melanocarpa L.) on the content and antioxidative activity of bioactive compounds. Molecules. 2016; 21(8): 1098. doi: 10.3390/molecules21081098
  82. Oszmiański J, Wojdylo A. Aronia melanocarpa phenolics and their antioxidant activity. European Food Research and Technology. 2005; 221(6): 809-813. doi: 10.1007/s00217-005-0002-5
  83. Šnebergrová J, Čížková H, Neradová E, Kapci B, Rajchl A, Voldřich M. Variability of characteristic components of aronia. Czech Journal of Food Sciences. 2013; 32(1): 25-30. doi: 10.17221/540/2012-CJFS
  84. McDougall GJ, Austin C, Van Schayk E, Martin P. Salal (Gaultheria shallon) and aronia (Aronia melanocarpa) fruits from Orkney: Phenolic content, composition and effect of wine-making. Food Chemistry. 2016; 205: 239-247. doi: 10.1016/j.foodchem.2016.03.025
  85. Kovačević DB, Kljusurić JG, Putnik P, Vukušić T, Herceg Z, Dragović-Uzelac V. Stability of polyphenols in chokeberry juice treated with gas phase plasma. Food Chemistry. 20161; 212: 323-3231. doi: 10.1016/j.food chem.2016.05.192
  86. Lee J, Durst RW, Wrolstad RE, Eisele T, Giusti MM, et al. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. Journal of AOAC International. 2005; 88(5): 1269-1278. doi: Nil.
  87. Boden G, Chen X. Effects of fat on glucose uptake and utilization in patients with non-insulin-dependent diabetes. The Journal of Clinical Investigation. 1995; 96(3): 1261-1268. doi: 10.1172/JCI118160
  88. Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW, et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. The Journal of Clinical Investigation. 1999; 103(2): 253-259. doi: 10.1172/JCI5001
  89. Wei Y, Wang D, Topczewski F, Pagliassotti MJ. Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. American Journal of Physiology, Endocrinology and Metabolism. 2006; 291(2): E275-E281. doi: 10.1152/ajpendo.00644.2005
  90. Karaskov E, Scott C, Zhang L, Teodoro T, Ravazzola M, Volchuk A. Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic β-cell apoptosis. Endocrinology. 2006; 147(7): 3398-3407. doi: 10.1210/en.2005-1494
  91. Guo W, Wong S, Xie W, Lei T, Luo Z. Palmitate modulates intracellular signaling, induces endoplasmic reticulum stress, and causes apoptosis in mouse 3T3-L1 and rat primary preadipocytes. American Journal of Physiology, Endocrinology and Metabolism. 2007; 293(2): E576-E586. doi: 10.1152/ajpendo.00523.2006
  92. Boden G, She P, Mozzoli M, Cheung P, Gumireddy K, Reddy P, et al. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-κB pathway in rat liver. Diabetes. 2005; 54(12): 3458-3465. doi: 10.2337/diabetes.54.12.3458
  93. Ding M, Bhupathiraju SN, Chen M, van Dam RM, Hu FB. Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: a systematic review and a dose-response meta-analysis. Diabetes Care. 2014; 37(2): 569-586. doi: 10.2337/dc13-1203
  94. Jiang X, Zhang D, Jiang W. Coffee and caffeine intake and incidence of type 2 diabetes mellitus: a meta-analysis of prospective studies. European Journal of Nutrition. 2014; 53(1): 25-38. doi: 10.1007/s00394-013-0603-x
  95. Van Dam RM, Hu FB. Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA. 2005; 294(1): 97-104. doi: 10.1001/jama.294.1.97
  96. Pereira MA, Parker ED, Folsom AR. Coffee consumption and risk of type 2 diabetes mellitus: an 11-year prospective study of 28 812 postmenopausal women. Archives of Internal Medicine. 2006; 166(12): 1311-1316. doi: 10.1001/archinte.166.12.1311
  97. Van Dam RM, Feskens EJ. Coffee consumption and risk of type 2 diabetes mellitus. Lancet. 2002; 360(9344): 1477-1478. doi: 10.1016/S0140-6736(02)11436-X
  98. Iso H, Date C, Wakai K, Fukui M, Tamakoshi A, JACC study group. The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults. Annals of Internal Medicine. 2006; 144(8): 554-562. doi: 10.7326/0003-4819-144-8-200604180-00005
  99. Yang J, Mao QX, Xu HX, Ma X, Zeng CY. Tea consumption and risk of type 2 diabetes mellitus: a systematic review and meta-analysis update. BMJ Open. 2014; 4(7): e005632. doi: 10.1136/bmjopen-2014-005632
  100. Van Dieren S, Uiterwaal CS, Van der Schouw YT, Van Der A DL, Boer JM, Spijkerman A, et al. Coffee and tea consumption and risk of type 2 diabetes. Diabetologia. 2009; 52(12): 2561-2569. doi: 10.1007/s00125-009-1516
  101. Daskalova E, Delchev S, Topolov M, Dimitrova S, Uzunova Y, Valcheva-Kuzmanova S, et al. Aronia melanocarpa (Michx.) Elliot fruit juice reveals neuroprotective effect and improves cognitive and locomotor functions of aged rats. Food and Chemical Toxicology. 2019; 132: 110674.
  102. Tian Y, Liimatainen J, Alanne AL, Lindstedt A, Liu P, Sinkkonen J, et al. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chemistry. 2017; 220: 266-281. doi: 10.1016/ J.foodchem.2016. 09.145
  103. Benvenuti S, Pellati F, Melegari M. Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of rubus, ribes, and aronia, Journal of Food Science. 2004; 69(3): 164-169. doi: 10.1111/j.1365-2621.2004. Tb13352.x
  104. Ren Y, Frank T, Meyer G, Lei J, Grebenc JR, Slaughter R, et al. Potential benefits of black chokeberry (Aronia melanocarpa) fruits and their constituents in improving human health. Molecules. 2022; 27: 7823.
  105. Banjari I, Misir A, Šavikin K, Jokić S, Molnar M, De Zoysa HK, Waisundara VY. Antidiabetic effects of Aronia melanocarpa and its other therapeutic properties. Frontiers in Nutrition. 2017; 4: 53. doi: 10.3389/fnut.2017. 00053
  106. Kasprzak-Drozd K, Oniszczuk T, Soja J, Gancarz M, Wojtunik-Kulesza K, Markut-Miotła E, Oniszczuk A. The efficacy of black Chokeberry fruits against cardiovascular diseases. International Journal of Molecular Sciences. 2021; 22(12): 6541. doi: 10.3390/ijms22126541

Submitted date:
09/04/2025

Reviewed date:
11/04/2025

Accepted date:
11/09/2025

6918c678a9539559450f5484 mjmmr Articles
Links & Downloads

Mediterr J Med Med Sci

Share this page
Page Sections